本事業の実績 / 2011-2012 I 本事業の実績 / 2009-2010 I  過去の実績
 
    大阪大学の業績
 enlarge
fig01    

     大阪大学では温度応答性培養皿を用いた心筋シート作成に成功し、心不全モデルに対する移植効果を確認後、重症心不全患者に対する臨床応用を行い、一例目の患者は人工心臓を離脱して退院した。一連の研究成果は国内外で評価され、国際共同研究へと発展した。


mini1



このページの一番上へ
    ハノーファー医科大学との間の共同研究業績
 enlarge


     ドイツとはハノーファー医大のHaverich教授が主催したドイツ胸部外科学会に招請されたのを契機に共同研究を始め、日本心臓財団からの奨学金(1年間)を受給して2007年9月より大阪大学から秦広樹研究員がハノーファーに滞在して脱細胞化小腸粘膜下組織(BioVaM)を用いた心筋組織構築の研究を行ってきた。また、2008年度より上記二国間共同研究を開始し、井手春樹研究員が大阪大学より留学して研究テーマに沿った作業を始める予定である。一方、昨年ハノーファー医科大学はドイツ政府からExcellent Clusterとして「Rebirth (From Regenerative Biology To Reconstructive Therapy)」というタイトルで約50億円の再生医療研究費を獲得し、本年5月にはHans Borstセンターという名の再生医療研究所が附属病院に隣接したところに新設され、胸部心臓血管外科の研究部門であるLeibniz Research Laboratories for Biotechnology and Artificial Organs(LEBAO)が研究部門、研究員を増設して移転し、胸部臓器の再生医療研究を加速している。


spcr






2009/09/07 update
The construction of a novel 3D contractile patch composed of cardiomyocyte sheets and small intestinal submucosa (SIS)
Hiroki Hata, Antonia Bar, Axel Haverich, Andres Hilfiker
Medizinische Hochschule Hannover, LEBAO/HTTG-Chirurgie, Hannover, German

Background
The availability of a contractile cardiac patch to replace or reinforce weakened heart tissue is of central interest for cardiologists or cardiac surgeons. Tissue engineering may offer possible solutions for these needs. By seeding neonatal rat cardiomyocytes on decellularized porcine small intestinal submucosa (SIS), a contractile construct with a defined contraction direction was generated. Here we report a second step towards an implantable myocardial patch, in such a way that cardiomyocyte sheets are combined with pre-seeded SIS constructs (Fig. 1).

fig1


Methods
Porcine small intestinal submucosa (SIS) from which Serosa and Mucosa were mechanically removed, was decellularized with detergents, cut open along the longitudinal axis, fixed in a metal frame (2.5 x 4.5cm), and seeded onto the submucosa side with cardiomyocytes (CM) isolated from neonatal rat ventricles with Percoll gradient in a density of 1.8 x 105 CM/cm2. CM sheets were prepared using temperature-responsive dishes (UpCell; CellSeed, Tokyo, Japan; φ35mm) (Fig. 2A,B). 4.0 x 106 CM enriched by preplating were seeded onto a UpCell. Three days after CM seeding on SIS, 1 CM sheet (n=24) or 3 layered sheets (n=18) were stacked onto the pre-seeded SIS (Fig. 2D). Contraction of SIS and attached cell sheets was observed for additional 10 days. Histological analysis was also performed.

fig2


Results
SIS seeded with CM started to contract spontaneously 2 days after seeding. After stacking the CM sheets, the constructs started to contract a few hour after adherence and their contraction was synchronized with the SIS contraction. Approximately 50% of myocardial patches (with 1 or 3 cell sheets) kept contracting until day 14. The beating rate of myocardial patches is shown in Fig. 3.

fig3


A large proportion of analyzed constructs showed a defined contraction direction parallel to the longitudinal axis of the SIS (seeded SIS: 83%; seeded SIS + 1 CM sheet: 70%; seeded SIS + 3 layered CM sheets: 71%, at day 7). This finding was in concordance with the histological finding of aligned CM parallel to the longitudinal axis of the SIS (Fig. 4).

fig4


Cross-sectional observations with HE staining revealed that layered CM sheets had well adhered to seeded SIS. As to the thickness, a CM sheet was 40-50μm thick, SIS was 300-500μm thick and seeded SIS with 3 layered CM sheets was 600-800μm thick as a whole (Fig. 5A-E). Immunohistochemical study with an anti-connexin 43 antibody revealed diffuse gap junctions within the 3-layered CM sheets on seeded SIS (Fig. 5F).

fig5

 

Conclusion
By combining a reseeded, single CM layered matrix with CM sheets, a multiple layered contractile myocardial graft can be constructed that contracts in a defined direction. Such a graft may used surgically to support diseased myocardial tissue upon implantation, however, it may also represent an intermediate step on the way to a multiple layered, vascularized 3D contractile myocardial graft by means of biological vascularized matrix (BioVaM) and perfusionable bioreactor system.



Disclosure Statement: No competing financial interests exist.
Acknowledgements: This study was supported by grants from CORTISS Foundation, Japan Heart Foundation and the Uehara Memorial Foundation.

 

このページの一番上へ
    ヘルシンキ大学医学部との間の二国間共同研究の実績
 enlarge
fig03

     上記二国間共同研究の期間中にHGFプラスミドが大阪大学からフィンランドに送られ、ドキソルビシンで遺伝子調節可能な新規レンチウイルスベクターを用いたHGF遺伝子発現システムが開発された。2007年に大阪大学から北林克清研究員がヘルシンキに滞在し、このベクターを用いて既に開発されていたbcl-2遺伝子発現システムを用いて遺伝子発現筋芽細胞による細胞シートの作成を行い、更にこれを用いてラット心筋梗塞モデルを用いた細胞移植実験を行い、移植後の心機能が遺伝子非導入細胞シート群に比して有意に改善し、組織学的にも線維化の抑制、血管密度の向上することを2008年9月の欧州人工臓器学会にて報告した。

spcr
拡大
 
このページの一番上へ
 
 
 
このページの一番上へ
   
JSPS Core-to-Core Program, All Right Reserved.